Minimal graphs containing \boldsymbol{k} perfect matchings

Gašper Fijavž
(in collaboration with Matthias Kriesell)

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

Let G be a graph. An odd subdivision of a graph G is obtained by replacing every edge of G with a path of odd length connecting its endvertices, so that these paths are internally disjoint. The replacement paths may also be of length one, making a graph an odd subdivision of itself.

Assuming G^{\prime} is an odd subdivision of G there exists a natural bijective correspondence between perfect matchings in G and those in G^{\prime}.

A graph G is minimally k-matchable if it has at least k distinct perfect matchings but deleting an arbitrary edge results in a graph which has fewer than k perfect matchings.

Let $k \geq 1$ be an integer. We show that there exists a finite set of graphs \mathcal{G}_{k} so that every minimally k-matchable graph is isomorphic to a disjoint union of an odd subdivision of some graph from \mathcal{G}_{k} and several copies of K_{2}.

