Holditch's theorem in space forms

David Rochera

(in collaboration with Juan Monterde)
Dpt. of Mathematics, University of Valencia, Burjassot, Spain

Consider a point on a chord of fixed length whose endpoints are moving on a closed convex planar curve. The locus of that point is a new closed curve. Holditch's theorem states that the area of the new curve is less than that of the original curve by $\pi p q$, being p and q the lengths of the pieces in which the chord is divided by the point.

A generalization of Holditch's theorem in space forms is studied, where it is possible to give a linear formula but now depending on the size of the original curve. This result was firsly obtained by Vidal Abascal and Rodeja (see [1] and [2]). Afterwards, Santaló gave a simpler proof of the same formula using differential forms, [3]. Our contribution is to give another proof focusing on the spherical and a hyperbolic version of the theorem without using differential forms and a to note a relation between the involved area and a quartic curve related to a kind of algebraic curves called cruciform curves.

References

[1] Abascal Vidal, E., Área engendrada sobre una superficie por un arco de geodésica cuando uno de sus extremos recorre una curva fija y longitud de la curva descrita por el otro extremo, Revista Mat. Hisp.-Amer. (4) 7 (1947), 132-142.
[2] Abascal Vidal, E. and E. G. Rodeja, Nota sobre curvas en superficies de curvatura constante, Collectanea Math. num. V (1952).
[3] Santaló, L. A., Sobre el teorema de Holditch y sus análogos en geometría no euclidiana, Math. Notae 14 (1954), 32-49.

