On the minimum entropy for irreducible interval cycles

DAVID JUHER

(in collaboration with Lluís Alsedà, Francesc Mañosas) Dept. IMAE, Universitat de Girona, Catalonia, Spain

The class \mathcal{C}_n of interval cycles of period n can be divided into two disjoint families $\mathcal{R}_n \cup \mathcal{I}_n$. A cycle P belongs to \mathcal{R}_n and is called *reducible* if there exists an underlying cycle Q whose period k > 1 divides n such that P is obtained from expanding any point of Q to a block of n/k points and the blocks are cyclically permuted according to Q. On the other hand, a cycle belongs to \mathcal{I}_n and is called *irreducible* if it is "genuine" in the sense that it cannot be obtained from a cycle of smaller period after replacing points by blocks. The cycles with minimum entropy in \mathcal{C}_n are well known, since they have to be *primary* (forcing minimal) and the primary interval cycles are completely characterized in the literature. When nis odd, the entropy-minimal *n*-cycles are Stefan cycles, in particular irreducible. But for n even they turn out to be reducible. So, finding the cycles of minimum entropy in the class \mathcal{I}_n for n even is a natural (and open) problem. For any n even we define an irreducible unimodal cycle P_n and prove that P_n is primary in \mathcal{I}_n . It follows that P_n minimizes the entropy in the set (contained in \mathcal{I}_n) of unimodal irreducible cycles of period n. We conjecture that P_n has in fact the minimum entropy in the whole class \mathcal{I}_n .